1. a) If $\left|\begin{array}{ccc}-5 & 5 & 10 \\ 5 & -5 & x \\ 0 & 10 & 5\end{array}\right|=0$, find the value of $x$.
b) Write the co-factor of $\mathrm{a}_{3}$ in $\left|\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right|$.
c) Evaluate : $\left|\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right|$.
d) Write the adjoint of the following matrix: $\left[\begin{array}{cc}2 & -1 \\ 4 & 3\end{array}\right]$
e) If $A$ is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to
a) I
b) I - A
c) A

f) If $A=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ is such that $\mathrm{A}^{2}=\mathrm{I}$, then
a) $1+a^{2}+b c=0$
b) $1-\mathrm{a}^{2}-\mathrm{bc}=0$
c) $1-a^{2}+b c=0$
d) $1+a^{2}-b c=0$
g) If $A=\left[\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right]$, then for what value of $\alpha$ is $A$ an identity matrix?
h) Find the value of $x$ and $y$ if : $\left.2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right] \cdot\right]$
2. a) If $A^{-1}=\left(\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right)$, determine $A$.
b) Evaluate without expanding at any stage $\left.\sqrt{\left.\begin{array}{lll}b^{2}-\alpha a b & b-c & b c-a c \\ a b-a a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b\end{array} \right\rvert\,-a^{2}} \right\rvert\,$.
c) If $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$,show that $A^{2}-6 A+17 I=O$. Hence find $A^{-1}$.
3.a) If the area of a triangle joining the three points (1, 1), (4, $\frac{t}{2}$ ) and (3,3t) be 5 sq units, using determinant find the value of $t$.
b) If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=x^{2}-2 x /-3$, find $f(A)$.
c) Express the matrix $\left[\begin{array}{ccc}1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
d) Using the properties of determinants, solve for $x$ : $\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$.
3. a) Given $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right]$, find adjoint of $A$. Hence find $\mathrm{A}^{-1}$.
b) Using properties of determinants, P. T. : $\left|\begin{array}{ccc}a-b & b-c & c \\ a--a \\ b+c & c+a & a+b\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$.
4. Find the inverse of the following matrix using elementary operations $A=\left(\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$

$$
x+2 y+3 z=6
$$

OR, Using matrices solve the following system of equations: $3 x+2 y-2 z=3$

$$
2 x-y+z=2
$$

6. a) Write the principal value of $\cot ^{-1}(-\sqrt{3})$.
b) Solve for $x: \tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$

OR, Prove that, $\tan ^{-1} \mathrm{x}+\cot ^{-1}(\mathrm{x}+1)=\tan ^{-1}\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$.

# "Lemming is a Treasure, which accompanies its awner everywhere" 

